Recursive Variational Bayesian Dual Estimation for Nonlinear Dynamics and Non-Gaussian Observations
State space models provide an interpretable framework for complex time series by combining an intuitive dynamical system model with a probabilistic observation model. We developed a flexible online learning framework for latent nonlinear state dynamics and filtered latent states. Our method utilizes the stochastic gradient variational Bayes method to jointly optimize the parameters of the nonlinear dynamics, observation model, and the recognition model. Unlike previous approaches, our framework can incorporate non-trivial observation noise models and infer in real-time. We test our method on point process observations driven by continuous attractor dynamics, demonstrating its ability to recover the phase portrait, filtered trajectory, and produce long-term predictions for neuroscience applications.
READ FULL TEXT