Reducing language context confusion for end-to-end code-switching automatic speech recognition
Code-switching is about dealing with alternative languages in the communication process. Training end-to-end (E2E) automatic speech recognition (ASR) systems for code-switching is known to be a challenging problem because of the lack of data compounded by the increased language context confusion due to the presence of more than one language. In this paper, we propose a language-related attention mechanism to reduce multilingual context confusion for the E2E code-switching ASR model based on the Equivalence Constraint Theory (EC). The linguistic theory requires that any monolingual fragment that occurs in the code-switching sentence must occur in one of the monolingual sentences. It establishes a bridge between monolingual data and code-switching data. By calculating the respective attention of multiple languages, our method can efficiently transfer language knowledge from rich monolingual data. We evaluate our method on ASRU 2019 Mandarin-English code-switching challenge dataset. Compared with the baseline model, the proposed method achieves 11.37 mix error rate reduction.
READ FULL TEXT