Regularity of the solution of the scalar Signorini problem in polygonal domains

10/01/2019
by   Thomas Apel, et al.
0

The Signorini problem for the Laplace operator is considered in a general polygonal domain. It is proved that the coincidence set consists of a finite number of boundary parts plus isolated points. The regularity of the solution is described. In particular, we show that the leading singularity is in general r_i^π/(2α_i) at transition points of Signorini to Dirichlet or Neumann conditions but r_i^π/α_i at kinks of the Signorini boundary, with α_i being the internal angle of the domain at these critical points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro