Regularized Least-Mean-Square Algorithms

12/22/2010
by   Yilun Chen, et al.
0

We consider adaptive system identification problems with convex constraints and propose a family of regularized Least-Mean-Square (LMS) algorithms. We show that with a properly selected regularization parameter the regularized LMS provably dominates its conventional counterpart in terms of mean square deviations. We establish simple and closed-form expressions for choosing this regularization parameter. For identifying an unknown sparse system we propose sparse and group-sparse LMS algorithms, which are special examples of the regularized LMS family. Simulation results demonstrate the advantages of the proposed filters in both convergence rate and steady-state error under sparsity assumptions on the true coefficient vector.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset