Reinforcement-based Simultaneous Algorithm and its Hyperparameters Selection
Many algorithms for data analysis exist, especially for classification problems. To solve a data analysis problem, a proper algorithm should be chosen, and also its hyperparameters should be selected. In this paper, we present a new method for the simultaneous selection of an algorithm and its hyperparameters. In order to do so, we reduced this problem to the multi-armed bandit problem. We consider an algorithm as an arm and algorithm hyperparameters search during a fixed time as the corresponding arm play. We also suggest a problem-specific reward function. We performed the experiments on 10 real datasets and compare the suggested method with the existing one implemented in Auto-WEKA. The results show that our method is significantly better in most of the cases and never worse than the Auto-WEKA.
READ FULL TEXT