Reinforcement Learning Assisted Load Test Generation for E-Commerce Applications

07/23/2020
by   Golrokh Hamidi, et al.
0

Background: End-user satisfaction is not only dependent on the correct functioning of the software systems but is also heavily dependent on how well those functions are performed. Therefore, performance testing plays a critical role in making sure that the system responsively performs the indented functionality. Load test generation is a crucial activity in performance testing. Existing approaches for load test generation require expertise in performance modeling, or they are dependent on the system model or the source code. Aim: This thesis aims to propose and evaluate a model-free learning-based approach for load test generation, which doesn't require access to the system models or source code. Method: In this thesis, we treated the problem of optimal load test generation as a reinforcement learning (RL) problem. We proposed two RL-based approaches using q-learning and deep q-network for load test generation. In addition, we demonstrated the applicability of our tester agents on a real-world software system. Finally, we conducted an experiment to compare the efficiency of our proposed approaches to a random load test generation approach and a baseline approach. Results: Results from the experiment show that the RL-based approaches learned to generate effective workloads with smaller sizes and in fewer steps. The proposed approaches led to higher efficiency than the random and baseline approaches. Conclusion: Based on our findings, we conclude that RL-based agents can be used for load test generation, and they act more efficiently than the random and baseline approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset