Relational Memory Augmented Language Models

01/24/2022
by   Qi Liu, et al.
1

We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model with a knowledge graph for a more coherent and logical generation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset