Relational Neural Machines
Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First–Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks.
READ FULL TEXT