Relay-assisted Device-to-Device Networks: Connectivity and Uberization Opportunities
It has been shown that deploying device-to-device (D2D) networks in urban environments requires to equip a huge proportion of crossroads with relays. This represents a necessary economic investment for an operator. In this work, we tackle the problem of the economic feasibility of such relay-assisted D2D networks. First, we propose a stochastic model taking into account a positive surface for streets and crossroads, thus allowing for a more realistic estimation of the minimal number of needed relays. Secondly, we introduce a cost model for the deployment of relays, allowing one to study operators' D2D deployment strategies. We investigate the example of an uberizing neo-operator willing to set up a network entirely relying on D2D and show that a return on the initial investment in relays is possible in a realistic period of time, even if the network is funded by a very low revenue per D2D user. Our results bring quantitative arguments to the discussion on possible uberization scenarios of telecommunications networks.
READ FULL TEXT