Reliable Detection of Doppelgängers based on Deep Face Representations

01/21/2022
by   Christian Rathgeb, et al.
6

Doppelgängers (or lookalikes) usually yield an increased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non-mated comparison trials. In this work, we assess the impact of doppelgängers on the HDA Doppelgänger and Disguised Faces in The Wild databases using a state-of-the-art face recognition system. It is found that doppelgänger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, we propose a doppelgänger detection method which distinguishes doppelgängers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelgänger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelgänger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7 authentication attempts from doppelgängers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro