Relieving Triplet Ambiguity: Consensus Network for Language-Guided Image Retrieval
Language-guided image retrieval enables users to search for images and interact with the retrieval system more naturally and expressively by using a reference image and a relative caption as a query. Most existing studies mainly focus on designing image-text composition architecture to extract discriminative visual-linguistic relations. Despite great success, we identify an inherent problem that obstructs the extraction of discriminative features and considerably compromises model training: triplet ambiguity. This problem stems from the annotation process wherein annotators view only one triplet at a time. As a result, they often describe simple attributes, such as color, while neglecting fine-grained details like location and style. This leads to multiple false-negative candidates matching the same modification text. We propose a novel Consensus Network (Css-Net) that self-adaptively learns from noisy triplets to minimize the negative effects of triplet ambiguity. Inspired by the psychological finding that groups perform better than individuals, Css-Net comprises 1) a consensus module featuring four distinct compositors that generate diverse fused image-text embeddings and 2) a Kullback-Leibler divergence loss, which fosters learning among the compositors, enabling them to reduce biases learned from noisy triplets and reach a consensus. The decisions from four compositors are weighted during evaluation to further achieve consensus. Comprehensive experiments on three datasets demonstrate that Css-Net can alleviate triplet ambiguity, achieving competitive performance on benchmarks, such as +2.77% R@10 and +6.67% R@50 on FashionIQ.
READ FULL TEXT