RepNAS: Searching for Efficient Re-parameterizing Blocks

09/08/2021
by   Mingyang Zhang, et al.
16

In the past years, significant improvements in the field of neural architecture search(NAS) have been made. However, it is still challenging to search for efficient networks due to the gap between the searched constraint and real inference time exists. To search for a high-performance network with low inference time, several previous works set a computational complexity constraint for the search algorithm. However, many factors affect the speed of inference(e.g., FLOPs, MACs). The correlation between a single indicator and the latency is not strong. Currently, some re-parameterization(Rep) techniques are proposed to convert multi-branch to single-path architecture which is inference-friendly. Nevertheless, multi-branch architectures are still human-defined and inefficient. In this work, we propose a new search space that is suitable for structural re-parameterization techniques. RepNAS, a one-stage NAS approach, is present to efficiently search the optimal diverse branch block(ODBB) for each layer under the branch number constraint. Our experimental results show the searched ODBB can easily surpass the manual diverse branch block(DBB) with efficient training. Code and models will be available sooner.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset