RESPARC: A Reconfigurable and Energy-Efficient Architecture with Memristive Crossbars for Deep Spiking Neural Networks
Neuromorphic computing using post-CMOS technologies is gaining immense popularity due to its promising abilities to address the memory and power bottlenecks in von-Neumann computing systems. In this paper, we propose RESPARC - a reconfigurable and energy efficient architecture built-on Memristive Crossbar Arrays (MCA) for deep Spiking Neural Networks (SNNs). Prior works were primarily focused on device and circuit implementations of SNNs on crossbars. RESPARC advances this by proposing a complete system for SNN acceleration and its subsequent analysis. RESPARC utilizes the energy-efficiency of MCAs for inner-product computation and realizes a hierarchical reconfigurable design to incorporate the data-flow patterns in an SNN in a scalable fashion. We evaluate the proposed architecture on different SNNs ranging in complexity from 2k-230k neurons and 1.2M-5.5M synapses. Simulation results on these networks show that compared to the baseline digital CMOS architecture, RESPARC achieves 500X (15X) efficiency in energy benefits at 300X (60X) higher throughput for multi-layer perceptrons (deep convolutional networks). Furthermore, RESPARC is a technology-aware architecture that maps a given SNN topology to the most optimized MCA size for the given crossbar technology.
READ FULL TEXT