Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

05/25/2019
by   Tianyu Pang, et al.
0

Previous work shows that adversarially robust generalization requires larger sample complexity, and the same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models. Since collecting new training data could be costly, we instead focus on inducing locally dense sample distribution, i.e., high sample density in the feature space which could lead to locally sufficient samples for robust learning. We first formally show that the softmax cross-entropy (SCE) loss and its variants induce inappropriate sample density distributions in the feature space, which inspires us to design appropriate training objectives. Specifically, we propose the Max-Mahalanobis center (MMC) loss to create high-density regions for better robustness. It encourages the learned features to gather around the preset class centers with optimal inter-class dispersion. Comparing to the SCE loss and its variants, we empirically demonstrate that applying the MMC loss can significantly improve robustness even under strong adaptive attacks, while keeping state-of-the-art accuracy on clean inputs with little extra computation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset