Revisiting Deep Active Learning for Semantic Segmentation
Active learning automatically selects samples for annotation from a data pool to achieve maximum performance with minimum annotation cost. This is particularly critical for semantic segmentation, where annotations are costly. In this work, we show in the context of semantic segmentation that the data distribution is decisive for the performance of the various active learning objectives proposed in the literature. Particularly, redundancy in the data, as it appears in most driving scenarios and video datasets, plays a large role. We demonstrate that the integration of semi-supervised learning with active learning can improve performance when the two objectives are aligned. Our experimental study shows that current active learning benchmarks for segmentation in driving scenarios are not realistic since they operate on data that is already curated for maximum diversity. Accordingly, we propose a more realistic evaluation scheme in which the value of active learning becomes clearly visible, both by itself and in combination with semi-supervised learning.
READ FULL TEXT