RHINO: Rotated DETR with Dynamic Denoising via Hungarian Matching for Oriented Object Detection

05/12/2023
by   Hakjin Lee, et al.
0

With the publication of DINO, a variant of the Detection Transformer (DETR), Detection Transformers are breaking the record in the object detection benchmark with the merits of their end-to-end design and scalability. However, the extension of DETR to oriented object detection has not been thoroughly studied although more benefits from its end-to-end architecture are expected such as removing NMS and anchor-related costs. In this paper, we propose a first strong DINO-based baseline for oriented object detection. We found that straightforward employment of DETRs for oriented object detection does not guarantee non-duplicate prediction, and propose a simple cost to mitigate this. Furthermore, we introduce a dynamic denoising strategy that uses Hungarian matching to filter redundant noised queries and query alignment to preserve matching consistency between Transformer decoder layers. Our proposed model outperforms previous rotated DETRs and other counterparts, achieving state-of-the-art performance in DOTA-v1.0/v1.5/v2.0, and DIOR-R benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset