RLS-Based Detection for Massive Spatial Modulation MIMO

05/13/2019
by   Ali Bereyhi, et al.
0

Most detection algorithms in spatial modulation (SM) are formulated as linear regression via the regularized least-squares (RLS) method. In this method, the transmit signal is estimated by minimizing the residual sum of squares penalized with some regularization. This paper studies the asymptotic performance of a generic RLS-based detection algorithm employed for recovery of SM signals. We derive analytically the asymptotic average mean squared error and the error rate for the class of bi-unitarily invariant channel matrices. The analytic results are employed to study the performance of SM detection via the box-LASSO. The analysis demonstrates that the performance characterization for i.i.d. Gaussian channel matrices is valid for matrices with non-Gaussian entries, as well. This justifies the partially approved conjecture given in [1]. The derivations further extend the former studies to scenarios with non-i.i.d. channel matrices. Numerical investigations validate the analysis, even for practical system dimensions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro