Robust and Energy-efficient PPG-based Heart-Rate Monitoring

03/28/2022
by   Matteo Risso, et al.
13

A wrist-worn PPG sensor coupled with a lightweight algorithm can run on a MCU to enable non-invasive and comfortable monitoring, but ensuring robust PPG-based heart-rate monitoring in the presence of motion artifacts is still an open challenge. Recent state-of-the-art algorithms combine PPG and inertial signals to mitigate the effect of motion artifacts. However, these approaches suffer from limited generality. Moreover, their deployment on MCU-based edge nodes has not been investigated. In this work, we tackle both the aforementioned problems by proposing the use of hardware-friendly Temporal Convolutional Networks (TCN) for PPG-based heart estimation. Starting from a single "seed" TCN, we leverage an automatic Neural Architecture Search (NAS) approach to derive a rich family of models. Among them, we obtain a TCN that outperforms the previous state-of-the-art on the largest PPG dataset available (PPGDalia), achieving a Mean Absolute Error (MAE) of just 3.84 Beats Per Minute (BPM). Furthermore, we tested also a set of smaller yet still accurate (MAE of 5.64 - 6.29 BPM) networks that can be deployed on a commercial MCU (STM32L4) which require as few as 5k parameters and reach a latency of 17.1 ms consuming just 0.21 mJ per inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro