Robust Continuous Co-Clustering

02/14/2018
by   Xiao He, et al.
0

Clustering consists of grouping together samples giving their similar properties. The problem of modeling simultaneously groups of samples and features is known as Co-Clustering. This paper introduces ROCCO - a Robust Continuous Co-Clustering algorithm. ROCCO is a scalable, hyperparameter-free, easy and ready to use algorithm to address Co-Clustering problems in practice over massive cross-domain datasets. It operates by learning a graph-based two-sided representation of the input matrix. The underlying proposed optimization problem is non-convex, which assures a flexible pool of solutions. Moreover, we prove that it can be solved with a near linear time complexity on the input size. An exhaustive large-scale experimental testbed conducted with both synthetic and real-world datasets demonstrates ROCCO's properties in practice: (i) State-of-the-art performance in cross-domain real-world problems including Biomedicine and Text Mining; (ii) very low sensitivity to hyperparameter settings; (iii) robustness to noise and (iv) a linear empirical scalability in practice. These results highlight ROCCO as a powerful general-purpose co-clustering algorithm for cross-domain practitioners, regardless of their technical background.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro