Robust Perron Cluster Analysis for coarse-graining of non-reversible stochastic matrices with complex eigenvalues

06/29/2022
by   Anna-Simone Frank, et al.
0

The Robust Perron Cluster Analysis (PCCA+) has become a popular algorithm for coarse-graining transition matrices of nearly decomposable Markov chains with transition states. Though originally developed for reversible Markov chains, it has been shown previously that PCCA+ can also be applied to cluster non-reversible Markov chains. However, the algorithm was implemented by assuming the dominant (target) eigenvalues to be real numbers. Therefore, the generalized Robust Perron Cluster Analysis (G-PCCA+) has recently been developed. G-PCCA+ is based on real Schur vectors instead of eigenvectors and can therefore be used to also coarse-grain transition matrices with complex eigenvalues. In its current implementation, however, G-PCCA+ is computationally expensive, which limits its applicability to large matrix problems. In this paper, we demonstrate that PCCA+ works in fact on any dominant invariant subspace of a nearly decomposable transition matrix, including both Schur vectors and eigenvectors. In particular, by separating the real and imaginary parts of complex eigenvectors, PCCA+ also works for transition matrices that have complex eigenvalues, including matrices with a circular transition pattern. We show that this separation maintains the invariant subspace, and that our version of the PCCA+ algorithm results in the same coarse-grained transition matrices as G-PCCA+, whereby PCCA+ is consistently faster in runtime than G-PCCA+. The analysis is performed in the Matlab programming language and codes are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro