Robust preconditioning and error estimates for optimal control of the convection-diffusion-reaction equation with limited observation in Isogeometric analysis

12/23/2020
by   Kent-Andre Mardal, et al.
0

In this paper we analyze an optimization problem with limited observation governed by a convection–diffusion–reaction equation. Motivated by a Schur complement approach, we arrive at continuous norms that enable analysis of well-posedness and subsequent derivation of error analysis and a preconditioner that is robust with respect to the parameters of the problem. We provide conditions for inf-sup stable discretizations and present one such discretization for box domains with constant convection. We also provide a priori error estimates for this discretization. The preconditioner requires a fourth order problem to be solved. For this reason, we use Isogeometric Analysis as a method of discretization. To efficiently realize the preconditioner, we consider geometric multigrid with a standard Gauss-Seidel smoother as well as a new macro Gauss-Seidel smoother. The latter smoother provides good results with respect to both the geometry mapping and the polynomial degree.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset