Robust Speaker Clustering using Mixtures of von Mises-Fisher Distributions for Naturalistic Audio Streams

08/18/2018
by   Harishchandra Dubey, et al.
0

Speaker Diarization (i.e. determining who spoke and when?) for multi-speaker naturalistic interactions such as Peer-Led Team Learning (PLTL) sessions is a challenging task. In this study, we propose robust speaker clustering based on mixture of multivariate von Mises-Fisher distributions. Our diarization pipeline has two stages: (i) ground-truth segmentation; (ii) proposed speaker clustering. The ground-truth speech activity information is used for extracting i-Vectors from each speechsegment. We post-process the i-Vectors with principal component analysis for dimension reduction followed by lengthnormalization. Normalized i-Vectors are high-dimensional unit vectors possessing discriminative directional characteristics. We model the normalized i-Vectors with a mixture model consisting of multivariate von Mises-Fisher distributions. K-means clustering with cosine distance is chosen as baseline approach. The evaluation data is derived from: (i) CRSS-PLTL corpus; and (ii) three-meetings subset of AMI corpus. The CRSSPLTL data contain audio recordings of PLTL sessions which is student-led STEM education paradigm. Proposed approach is consistently better than baseline leading to upto 44.48 improvements for PLTL and AMI corpus, respectively. Index Terms: Speaker clustering, von Mises-Fisher distribution, Peer-led team learning, i-Vector, Naturalistic Audio.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset