Robust Universal Adversarial Perturbations

06/22/2022
by   Changming Xu, et al.
0

Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs from a data distribution with high probability. Existing methods do not create UAPs robust to transformations, thereby limiting their applicability as a real-world attacks. In this work, we introduce a new concept and formulation of robust universal adversarial perturbations. Based on our formulation, we build a novel, iterative algorithm that leverages probabilistic robustness bounds for generating UAPs robust against transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring robustness under human-interpretable semantic transformations, such as rotation, contrast changes, etc, that are common in the real-world. Our results show that our generated UAPs are significantly more robust than those from baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset