Root Cause Analysis in Lithium-Ion Battery Production with FMEA-Based Large-Scale Bayesian Network

06/05/2020
by   Michael Kirchhof, et al.
0

The production of lithium-ion battery cells is characterized by a high degree of complexity due to numerous cause-effect relationships between process characteristics. Knowledge about the multi-stage production is spread among several experts, rendering tasks as failure analysis challenging. In this paper, a new method is presented that includes expert knowledge acquisition in production ramp-up by combining Failure Mode and Effects Analysis (FMEA) with a Bayesian Network. Special algorithms are presented that help detect and resolve inconsistencies between the expert-provided parameters which are bound to occur when collecting knowledge from several process experts. We show the effectiveness of this holistic method by building up a large scale, cross-process Bayesian Failure Network in lithium-ion battery production and its application for root cause analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro