Root Radii and Subdivision for Polynomial Root-Finding
We depart from our approximation of 2000 of all root radii of a polynomial, which has readily extended Schönhage's efficient algorithm of 1982 for a single root radius. We revisit this extension, advance it, based on our simple but novel idea, and yield significant practical acceleration of the known near optimal subdivision algorithms for complex and real root-finding of user's choice. We achieve this by means of significant saving of exclusion tests and Taylor's shifts, which are the bottleneck of subdivision root-finders. This saving relies on our novel recipes for the initialization of root-finding iterations of independent interest. We demonstrate our practical progress with numerical tests, provide extensive analysis of the resulting algorithms, and show that, like the preceding subdivision root-finders, they support near optimal Boolean complexity bounds.
READ FULL TEXT