Sampling from Arbitrary Functions via PSD Models
In many areas of applied statistics and machine learning, generating an arbitrary number of independent and identically distributed (i.i.d.) samples from a given distribution is a key task. When the distribution is known only through evaluations of the density, current methods either scale badly with the dimension or require very involved implementations. Instead, we take a two-step approach by first modeling the probability distribution and then sampling from that model. We use the recently introduced class of positive semi-definite (PSD) models, which have been shown to be efficient for approximating probability densities. We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models. We also present preliminary empirical results to illustrate our assertions.
READ FULL TEXT