Scaling Expected Force: Efficient Identification of Key Nodes in Network-based Epidemic Models

06/01/2023
by   Paolo Sylos Labini, et al.
0

Centrality measures are fundamental tools of network analysis as they highlight the key actors within the network. This study focuses on a newly proposed centrality measure, Expected Force (EF), and its use in identifying spreaders in network-based epidemic models. We found that EF effectively predicts the spreading power of nodes and identifies key nodes and immunization targets. However, its high computational cost presents a challenge for its use in large networks. To overcome this limitation, we propose two parallel scalable algorithms for computing EF scores: the first algorithm is based on the original formulation, while the second one focuses on a cluster-centric approach to improve efficiency and scalability. Our implementations significantly reduce computation time, allowing for the detection of key nodes at large scales. Performance analysis on synthetic and real-world networks demonstrates that the GPU implementation of our algorithm can efficiently scale to networks with up to 44 million edges by exploiting modern parallel architectures, achieving speed-ups of up to 300x, and 50x on average, compared to the simple parallel solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset