Scaling limit of the Stein variational gradient descent part I: the mean field regime
We study an interacting particle system in R^d motivated by Stein variational gradient descent [Q. Liu and D. Wang, NIPS 2016], a deterministic algorithm for sampling from a given probability density with unknown normalization. We prove that in the large particle limit the empirical measure converges to a solution of a non-local and nonlinear PDE. We also prove global well-posedness and uniqueness of the solution to the limiting PDE. Finally, we prove that the solution to the PDE converges to the unique invariant solution in large time limit.
READ FULL TEXT