Scaling Submodular Maximization via Pruned Submodularity Graphs

06/01/2016
by   Tianyi Zhou, et al.
0

We propose a new random pruning method (called "submodular sparsification (SS)") to reduce the cost of submodular maximization. The pruning is applied via a "submodularity graph" over the n ground elements, where each directed edge is associated with a pairwise dependency defined by the submodular function. In each step, SS prunes a 1-1/√(c) (for c>1) fraction of the nodes using weights on edges computed based on only a small number (O( n)) of randomly sampled nodes. The algorithm requires _√(c)n steps with a small and highly parallelizable per-step computation. An accuracy-speed tradeoff parameter c, set as c = 8, leads to a fast shrink rate √(2)/4 and small iteration complexity _2√(2)n. Analysis shows that w.h.p., the greedy algorithm on the pruned set of size O(^2 n) can achieve a guarantee similar to that of processing the original dataset. In news and video summarization tasks, SS is able to substantially reduce both computational costs and memory usage, while maintaining (or even slightly exceeding) the quality of the original (and much more costly) greedy algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset