Scenario-Agnostic Zero-Trust Defense with Explainable Threshold Policy: A Meta-Learning Approach

03/06/2023
by   Yunfei Ge, et al.
0

The increasing connectivity and intricate remote access environment have made traditional perimeter-based network defense vulnerable. Zero trust becomes a promising approach to provide defense policies based on agent-centric trust evaluation. However, the limited observations of the agent's trace bring information asymmetry in the decision-making. To facilitate the human understanding of the policy and the technology adoption, one needs to create a zero-trust defense that is explainable to humans and adaptable to different attack scenarios. To this end, we propose a scenario-agnostic zero-trust defense based on Partially Observable Markov Decision Processes (POMDP) and first-order Meta-Learning using only a handful of sample scenarios. The framework leads to an explainable and generalizable trust-threshold defense policy. To address the distribution shift between empirical security datasets and reality, we extend the model to a robust zero-trust defense minimizing the worst-case loss. We use case studies and real-world attacks to corroborate the results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro