Science Communications for Explainable Artificial Intelligence
Artificial Intelligence (AI) has a communication problem. XAI methods have been used to make AI more understandable and helped resolve some of the transparency issues that inhibit AI's broader usability. However, user evaluation studies reveal that the often numerical explanations provided by XAI methods have not always been effective for many types of users of AI systems. This article aims to adapt the major communications models from Science Communications into a framework for practitioners to understand, influence, and integrate the context of audiences both for their communications supporting AI literacy in the public and in designing XAI systems that are more adaptive to different users.
READ FULL TEXT