Secure and Reliable Transfer Learning Framework for 6G-enabled Internet of Vehicles

11/10/2021
by   Minrui Xu, et al.
0

In the coming 6G era, Internet of Vehicles (IoV) has been evolving towards 6G-enabled IoV with super-high data rate, seamless networking coverage, and ubiquitous intelligence by Artificial Intelligence (AI). Transfer Learning (TL) has great potential to empower promising 6G-enabled IoV, such as smart driving assistance, with its outstanding features including enhancing quality and quantity of training data, speeding up learning processes and reducing computing demands. Although TL had been widely adopted in wireless applications (e.g., spectrum management and caching), its reliability and security in 6G-enabled IoV were still not well investigated. For instance, malicious vehicles in source domains may transfer and share untrustworthy models (i.e., knowledge) about connection availability to target domains, thus adversely affecting the performance of learning processes. Therefore, it is important to select and also incentivize trustworthy vehicles to participate in TL. In this article, we first introduce the integration of TL and 6G-enbaled IoV and provide TL applications for 6G-enabled IoV. We then design a secure and reliable transfer learning framework by using reputation to evaluate the reliability of pre-trained models and utilizing the consortium blockchain to achieve secure and efficient decentralized reputation management. Moreover, a deep learning-based auction scheme for the TL model market is designed to motivate high-reputation vehicles to participate in model sharing. Finally, the simulation results demonstrate that the proposed framework is secure and reliable with well-design incentives for TL in 6G-enabled IoV.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset