Secure Integrated Sensing and Communication Exploiting Target Location Distribution

06/07/2023
by   Kaiyue Hou, et al.
0

In this paper, we study a secure integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) simultaneously serves a downlink communication user and senses the location of a target that may potentially serve as an eavesdropper via its reflected echo signals. Specifically, the location information of the target is unknown and random, while its a priori distribution is available for exploitation. First, to characterize the sensing performance, we derive the posterior Cramér-Rao bound (PCRB) which is a lower bound of the mean squared error (MSE) for target sensing exploiting prior distribution. Due to the intractability of the PCRB expression, we further derive a novel approximate upper bound of it which has a closed-form expression. Next, under an artificial noise (AN) based beamforming structure at the BS to alleviate information eavesdropping and enhance the target's reflected signal power for sensing, we formulate a transmit beamforming optimization problem to maximize the worst-case secrecy rate among all possible target (eavesdropper) locations, under a sensing accuracy threshold characterized by an upper bound on the PCRB. Despite the non-convexity of the formulated problem, we propose a two-stage approach to obtain its optimal solution by leveraging the semi-definite relaxation (SDR) technique. Numerical results validate the effectiveness of our proposed transmit beamforming design and demonstrate the non-trivial trade-off between secrecy performance and sensing performance in secure ISAC systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro