Self Functional Maps

04/22/2018
by   Oshri Halimi, et al.
0

A classical approach for surface classification is to find a compact algebraic representation for each surface that would be similar for objects within the same class and preserve dissimilarities between classes. We introduce self functional maps as a novel surface representation that satisfies these properties, translating the geometric problem of surface classification into an algebraic form of classifying matrices. The proposed map transforms a given surface into a universal isometry invariant form defined by a unique matrix. The suggested representation is realized by applying the functional maps framework to map the surface into itself. The key idea is to use two different metric spaces of the same surface for which the functional map serves as a signature. Specifically, in this paper, we use the regular and the scale invariant surface laplacian operators to construct two families of eigenfunctions. The result is a matrix that encodes the interaction between the eigenfunctions resulted from two different Riemannian manifolds of the same surface. Using this representation, geometric shape similarity is converted into algebraic distances between matrices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset