Self-Supervised RF Signal Representation Learning for NextG Signal Classification with Deep Learning
Deep learning (DL) finds rich applications in the wireless domain to improve spectrum awareness. Typically, the DL models are either randomly initialized following a statistical distribution or pretrained on tasks from other data domains such as computer vision (in the form of transfer learning) without accounting for the unique characteristics of wireless signals. Self-supervised learning enables the learning of useful representations from Radio Frequency (RF) signals themselves even when only limited training data samples with labels are available. We present the first self-supervised RF signal representation learning model and apply it to the automatic modulation recognition (AMR) task by specifically formulating a set of transformations to capture the wireless signal characteristics. We show that the sample efficiency (the number of labeled samples required to achieve a certain accuracy performance) of AMR can be significantly increased (almost an order of magnitude) by learning signal representations with self-supervised learning. This translates to substantial time and cost savings. Furthermore, self-supervised learning increases the model accuracy compared to the state-of-the-art DL methods and maintains high accuracy even when a small set of training data samples is used.
READ FULL TEXT