Semi-Supervised Learning with IPM-based GANs: an Empirical Study

12/07/2017
by   Tom Sercu, et al.
0

We present an empirical investigation of a recent class of Generative Adversarial Networks (GANs) using Integral Probability Metrics (IPM) and their performance for semi-supervised learning. IPM-based GANs like Wasserstein GAN, Fisher GAN and Sobolev GAN have desirable properties in terms of theoretical understanding, training stability, and a meaningful loss. In this work we investigate how the design of the critic (or discriminator) influences the performance in semi-supervised learning. We distill three key take-aways which are important for good SSL performance: (1) the K+1 formulation, (2) avoiding batch normalization in the critic and (3) avoiding gradient penalty constraints on the classification layer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset