Sequence-Based Target Coin Prediction for Cryptocurrency Pump-and-Dump
As the pump-and-dump schemes (P Ds) proliferate in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance, to inform potentially susceptible investors before they become victims. In this paper, we focus on the target coin prediction task, i.e., to predict the pump probability of all coins listed in the target exchange before a pump. We conduct a comprehensive study of the latest P Ds, investigate 709 events organized in Telegram channels from Jan. 2019 to Jan. 2022, and unearth some abnormal yet interesting patterns of P Ds. Empirical analysis demonstrates that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity, which inspires us to develop a novel sequence-based neural network named SNN. Specifically, SNN encodes each channel's pump history as a sequence representation via a positional attention mechanism, which filters useful information and alleviates the noise introduced when the sequence length is long. We also identify and address the coin-side cold-start problem in a practical setting. Extensive experiments show a lift of 1.6 Ratio@3 brought by our method, making it well-suited for real-world application. As a side contribution, we release the source code of our entire data science pipeline on GitHub, along with the dataset tailored for studying the latest P Ds.
READ FULL TEXT