Sequence-to-sequence Models for Small-Footprint Keyword Spotting

11/01/2018
by   Haitong Zhang, et al.
0

In this paper, we propose a sequence-to-sequence model for keyword spotting (KWS). Compared with other end-to-end architectures for KWS, our model simplifies the pipelines of production-quality KWS system and satisfies the requirement of high accuracy, low-latency, and small-footprint. We also evaluate the performances of different encoder architectures, which include LSTM and GRU. Experiments on the real-world wake-up data show that our approach outperforms the recently proposed attention-based end-to-end model. Specifically speaking, with 73K parameters, our sequence-to-sequence model achieves ∼3.05% false rejection rate (FRR) at 0.1 false alarm (FA) per hour.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro