Sequential Probability Assignment with Binary Alphabets and Large Classes of Experts

01/29/2015
by   Alexander Rakhlin, et al.
0

We analyze the problem of sequential probability assignment for binary outcomes with side information and logarithmic loss, where regret---or, redundancy---is measured with respect to a (possibly infinite) class of experts. We provide upper and lower bounds for minimax regret in terms of sequential complexities of the class. These complexities were recently shown to give matching (up to logarithmic factors) upper and lower bounds for sequential prediction with general convex Lipschitz loss functions (Rakhlin and Sridharan, 2015). To deal with unbounded gradients of the logarithmic loss, we present a new analysis that employs a sequential chaining technique with a Bernstein-type bound. The introduced complexities are intrinsic to the problem of sequential probability assignment, as illustrated by our lower bound. We also consider an example of a large class of experts parametrized by vectors in a high-dimensional Euclidean ball (or a Hilbert ball). The typical discretization approach fails, while our techniques give a non-trivial bound. For this problem we also present an algorithm based on regularization with a self-concordant barrier. This algorithm is of an independent interest, as it requires a bound on the function values rather than gradients.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset