Shape DNA: Basic Generating Functions for Geometric Moment Invariants
Geometric moment invariants (GMIs) have been widely used as basic tool in shape analysis and information retrieval. Their structure and characteristics determine efficiency and effectiveness. Two fundamental building blocks or generating functions (GFs) for invariants are discovered, which are dot product and vector product of point vectors in Euclidean space. The primitive invariants (PIs) can be derived by carefully selecting different products of GFs and calculating the corresponding multiple integrals, which translates polynomials of coordinates of point vectors into geometric moments. Then the invariants themselves are expressed in the form of product of moments. This procedure is just like DNA encoding proteins. All GMIs available in the literature can be decomposed into linear combinations of PIs. This paper shows that Hu's seven well known GMIs in computer vision have a more deep structure, which can be further divided into combination of simpler PIs. In practical uses, low order independent GMIs are of particular interest. In this paper, a set of PIs for similarity transformation and affine transformation in 2D are presented, which are simpler to use, and some of which are newly reported. The discovery of the two generating functions provides a new perspective of better understanding shapes in 2D and 3D Euclidean spaces, and the method proposed can be further extended to higher dimensional spaces and different manifolds, such as curves, surfaces and so on.
READ FULL TEXT