Sherali--Adams Strikes Back

12/24/2018
by   Ryan O'Donnell, et al.
0

Let G be any n-vertex graph whose random walk matrix has its nontrivial eigenvalues bounded in magnitude by 1/√(Δ) (for example, a random graph G of average degree Θ(Δ) typically has this property). We show that the (c n/Δ)-round Sherali--Adams linear programming hierarchy certifies that the maximum cut in such a G is at most 50.1% (in fact, at most 12 + 2^-Ω(c)). For example, in random graphs with n^1.01 edges, O(1) rounds suffice; in random graphs with n ·polylog(n) edges, n^O(1/ n) = n^o(1) rounds suffice. Our results stand in contrast to the conventional beliefs that linear programming hierarchies perform poorly for and other CSPs, and that eigenvalue/SDP methods are needed for effective refutation. Indeed, our results imply that constant-round Sherali--Adams can strongly refute random Boolean k-CSP instances with n^ k/2 + δ constraints; previously this had only been done with spectral algorithms or the SOS SDP hierarchy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset