Simpler Proofs of Quantumness

05/11/2020
by   Zvika Brakerski, et al.
0

A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a quantum device can perform computational tasks that a classical device with comparable resources cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum computer. There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a classically-hard one-way function (e.g. using Shor's algorithm). This seems technologically out of reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This may be within reach of near-term experiments, but for all such tasks known verification requires exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a trapdoor scheme allows for efficient verification, and implementation seems to require much less resources than (i), yet still more than (ii). In this work we propose a significant simplification to approach (iii) by employing the random oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.) We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property. This allows the use of smaller security parameters and more diverse computational assumptions (such as Ring Learning with Errors), significantly reducing the quantum computational effort required for a successful demonstration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset