Single Model Ensemble using Pseudo-Tags and Distinct Vectors

05/02/2020
by   Ryosuke Kuwabara, et al.
0

Model ensemble techniques often increase task performance in neural networks; however, they require increased time, memory, and management effort. In this study, we propose a novel method that replicates the effects of a model ensemble with a single model. Our approach creates K-virtual models within a single parameter space using K-distinct pseudo-tags and K-distinct vectors. Experiments on text classification and sequence labeling tasks on several datasets demonstrate that our method emulates or outperforms a traditional model ensemble with 1/K-times fewer parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset