Skew-Normal Posterior Approximations

02/16/2023
by   Jackson Zhou, et al.
0

Many approximate Bayesian inference methods assume a particular parametric form for approximating the posterior distribution. A multivariate Gaussian distribution provides a convenient density for such approaches; examples include the Laplace, penalized quasi-likelihood, Gaussian variational, and expectation propagation methods. Unfortunately, these all ignore the potential skewness of the posterior distribution. We propose a modification that accounts for skewness, where key statistics of the posterior distribution are matched instead to a multivariate skew-normal distribution. A combination of simulation studies and benchmarking were conducted to compare the performance of this skew-normal matching method (both as a standalone approximation and as a post-hoc skewness adjustment) with existing Gaussian and skewed approximations. We show empirically that for small and moderate dimensional cases, skew-normal matching can be much more accurate than these other approaches. For post-hoc skewness adjustments, this comes at very little cost in additional computational time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro