Smooth Points on Semi-algebraic Sets

02/11/2020
by   Katherine Harris, et al.
0

Many algorithms for determining properties of real algebraic or semi-algebraic sets rely upon the ability to compute smooth points. Existing methods to compute smooth points on semi-algebraic sets use symbolic quantifier elimination tools. In this paper, we present a simple algorithm based on computing the critical points of some well-chosen function that guarantees the computation of smooth points in each connected compact component of a real (semi)-algebraic set. Our technique is intuitive in principal, performs well on previously difficult examples, and is straightforward to implement using existing numerical algebraic geometry software. The practical efficiency of our approach is demonstrated by solving a conjecture on the number of equilibria of the Kuramoto model for the n=4 case. We also apply our method to design an efficient algorithm to compute the real dimension of (semi)-algebraic sets, the original motivation for this research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset