Smoothed Analysis of Pareto Curves in Multiobjective Optimization

10/21/2020
by   Heiko Roglin, et al.
0

In a multiobjective optimization problem a solution is called Pareto-optimal if no criterion can be improved without deteriorating at least one of the other criteria. Computing the set of all Pareto-optimal solutions is a common task in multiobjective optimization to filter out unreasonable trade-offs. For most problems the number of Pareto-optimal solutions increases only moderately with the input size in applications. However, for virtually every multiobjective optimization problem there exist worst-case instances with an exponential number of Pareto-optimal solutions. In order to explain this discrepancy, we analyze a large class of multiobjective optimization problems in the model of smoothed analysis and prove a polynomial bound on the expected number of Pareto-optimal solutions. We also present algorithms for computing the set of Pareto-optimal solutions for different optimization problems and discuss related results on the smoothed complexity of optimization problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset