Solving realistic security-constrained optimal power flow problems

10/04/2021
by   Cosmin G. Petra, et al.
0

We present a decomposition approach for obtaining good feasible solutions for the security-constrained alternating-current optimal power flow (SCACOPF) problem at an industrial scale and under real-world time and computational limits. The approach aims at complementing the existing body of literature on bounding the problem via convex relaxations. It was designed for the participation in ARPA-E's Grid Optimization (GO) Competition Challenge 1. The challenge focused on a near-real-time version of the SCACOPF problem where a base case operating point is optimized taking into account possible single-element contingencies, after which the system adapts its operating point following the response of automatic frequency drop controllers and voltage regulators. Our solution approach for this problem relies on state-of-the-art nonlinear programming algorithms and employs nonconvex relaxations for complementarity constraints, a specialized two-stage decomposition technique with sparse approximations of recourse terms, and contingency ranking and pre-screening. The paper also outlines the salient features of our implementation, such as fast model functions and derivatives evaluation, warm-starting strategies, and asynchronous parallelism. We discuss the results of the independent benchmark of our approach done by ARPA-E's GO team in Challenge 1, which found that our methodology consistently produces high quality solutions across a wide range of network sizes and difficulty. Finally, we conclude by outlining potential extensions and improvements of our methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset