SoTeacher: A Student-oriented Teacher Network Training Framework for Knowledge Distillation
How to train an ideal teacher for knowledge distillation is still an open problem. It has been widely observed that a teacher minimizing the empirical risk not necessarily yields the best performing student, suggesting a fundamental discrepancy between the common practice in teacher network training and the distillation objective. To fill this gap, we propose a novel student-oriented teacher network training framework SoTeacher, inspired by recent findings that student performance hinges on teacher's capability to approximate the true label distribution of training samples. We theoretically established that (1) the empirical risk minimizer with proper scoring rules as loss function can provably approximate the true label distribution of training data if the hypothesis function is locally Lipschitz continuous around training samples; and (2) when data augmentation is employed for training, an additional constraint is required that the minimizer has to produce consistent predictions across augmented views of the same training input. In light of our theory, SoTeacher renovates the empirical risk minimization by incorporating Lipschitz regularization and consistency regularization. It is worth mentioning that SoTeacher is applicable to almost all teacher-student architecture pairs, requires no prior knowledge of the student upon teacher's training, and induces almost no computation overhead. Experiments on two benchmark datasets confirm that SoTeacher can improve student performance significantly and consistently across various knowledge distillation algorithms and teacher-student pairs.
READ FULL TEXT