Sound Explanation for Trustworthy Machine Learning

06/08/2023
by   Kai Jia, et al.
0

We take a formal approach to the explainability problem of machine learning systems. We argue against the practice of interpreting black-box models via attributing scores to input components due to inherently conflicting goals of attribution-based interpretation. We prove that no attribution algorithm satisfies specificity, additivity, completeness, and baseline invariance. We then formalize the concept, sound explanation, that has been informally adopted in prior work. A sound explanation entails providing sufficient information to causally explain the predictions made by a system. Finally, we present the application of feature selection as a sound explanation for cancer prediction models to cultivate trust among clinicians.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro