Space-Bounded Unitary Quantum Computation with Postselection

06/30/2022
by   Seiichiro Tani, et al.
0

Space-bounded computation has been a central topic in classical and quantum complexity theory. In the quantum case, every elementary gate must be unitary. This restriction makes it unclear whether the power of space-bounded computation changes by allowing intermediate measurement. In the bounded error case, Fefferman and Remscrim [STOC 2021, pp.1343–1356] and Girish, Raz and Zhan [ICALP 2021, pp.73:1–73:20] recently provided the break-through results that the power does not change. This paper shows that a similar result holds for space-bounded quantum computation with postselection. Namely, it is proved possible to eliminate intermediate postselections and measurements in the space-bounded quantum computation in the bounded-error setting. Our result strengthens the recent result by Le Gall, Nishimura and Yakaryilmaz [TQC 2021, pp.10:1–10:17] that logarithmic-space bounded-error quantum computation with intermediate postselections and measurements is equivalent in computational power to logarithmic-space unbounded-error probabilistic computation. As an application, it is shown that bounded-error space-bounded one-clean qubit computation (DQC1) with postselection is equivalent in computational power to unbounded-error space-bounded probabilistic computation, and the computational supremacy of the bounded-error space-bounded DQC1 is interpreted in complexity-theoretic terms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset